+33 (0)1 53 89 99 93 info@xebia-training.fr

Depuis le 15 novembre 2018, Xebia a rejoint Publicis Sapient, leader de la Digital Business Transformation.

Data Science

Formation Deep Learning avec TensorFlow et Keras

Avec Pierre Sendorek et Yoann Benoit

3 jours, soit 21 heures

Cette formation Deep Learning est axée sur la résolution de problèmes pratiques. Son objectif est de proposer aux participants une compréhension détaillée des principales architectures de réseaux de neurones, tout en gardant un focus très pragmatique sur leur utilisation optimale dans différentes conditions, avec de nombreux exemples, retours d’expérience et exercices.

La formation est composée de nombreux modules pratiques, dans lesquels les participants travailleront avec les frameworks TensorFlow et Keras. Ils pourront les utiliser sur différents cas faisant appel à des jeux de données d’images,  de textes et de données tabulaires.

Tout au long de la formation, les participants seront amenés à penser les frameworks de Deep Learning comme des outils permettant non seulement d’entraîner et d’utiliser des algorithmes de Deep Learning complexes, mais aussi comme des outils de résolution de tout un ensemble de problèmes d’optimisation divers et variés.

Programme

Introduction au Deep Learning
  • Qu’est-ce que le Deep Learning ?
  • Gradient-Based Optimization
  • Optimisation mathématique
  • Introduction à TensorFlow et Keras
Réseaux de neurones “Fully-Connected”
  • Introduction aux  réseaux de neurones “Fully-Connected”
  • Implémentation d’un réseau de neurones avec tf.keras
  • Introduction à TensorBoard
  • Regularisation pour les réseaux de neurones
  • API Data de TensorFlow
  • Bonnes pratiques pour le choix des hyperparamètres d’un réseau de neurones
  • Tour d’horison des optimizers
  • Gestion de l’instabilité du gradient
Réseaux de neurones convolutionnels (CNN)
  • Intuitions autour des convolutions
  • Réseaux de neurones convolutionnels pour les images
  • Architectures types pour les CNN
  • Transfer Learning
  • Utilisation de TensorFlow Hub
Réseaux de neurones récurrents (RNN)
  • Compréhension des réseaux  de neurones récurrents
  • Applications aux données textuelles
  • Utilisations avancées des réseaux de neurones récurrents
Utilisations avancées des réseaux de neurones
  • Autoencoders
  • Generative Adversarial Networks
  • Reinforcement Learning
Autres applications et bonnes pratiques
  • API Features de TensorFlow
  • API Estimator de TensorFlow
  • Points d’attention autour du biais

Objectif

A l’issue de cette formation, les participants sauront :

  • Connaître et comprendre les principales architectures de réseaux de neurones, ainsi que leur utilisation dans différents cas de figure
  • Manipuler efficacement un framework pour le Deep Learning
  • Connaître les bonnes pratiques autour de la résolution de problèmes de Deep Learning, tant sur l’optimisation des modèles que sur leur déploiement en production

Méthodes pédagogiques

Ce cours de 3 jours est découpé en 6 modules avec une validation des acquis à la fin de chaque module grâce à des exercices pratiques sous forme de notebooks Jupyter pour implémenter et tester les différentes architectures de réseaux de neurones.

Tarif HT

Inter : 2 100 €

Intra : Selon demande

Prochaines dates de formation

4-6 septembre 

Biographie

 

Pierre Sendorek

Pierre est passionné de Machine Learning et de traitement du signal. Il possède un doctorat en traitement du signal et un master en mathématiques appliquées, ainsi qu'un diplôme d'ingénieur. Il intervient aujourd'hui en tant que Data Scientist à Xebia, et travaille sur des projets liés au Machine Learning et au Deep Learning.

Biographie

Yoann Benoit

Yoann Benoit est Data Scientist et Chief Data Officer chez Xebia. Il est spécialisé dans la collecte, le traitement et l’analyse de données, de leur exploration à la mise en production des projets. Il intervient sur de nombreux sujets autour de la Data Science, de l'Intelligence Artificuelle et du Big Data. Speaker et blogueur à la fois sur les concepts et les technologies liées à la Data Science, il travaille principalement avec Python, Scala et Spark.

Yoann a été speaker lors de ces conférences :

  • On-Device Intelligence : Intégrez du Deep Learning sur vos Smartphones (DevFest Nantes 2017, XebiCon 2017, AndroidMakers 2017)
  • Le Deep Learning dans la vraie vie (XebiCon 2017)
  • Data Science & Craftsmanship : Je t'aime, moi non plus (XebiCon 2016, PyData 2016)
  • Utiliser du Deep Learning pour interpréter des photographies (XebiCon 2016)
  • Machine Learning sur Spark (Devoxx 2015, Mix-IT 2015, BreizhCamp 2015)

Quelques publications :

Retrouvez égalemeent ses articles sur le blog Technique de Xebia.

Public visé

Cette formation Deep Learning est à destination des Data Scientists, Machine Learning Engineers ou développeurs ayant une appétence et une première expérience avec le Machine Learning.

Prérequis

Une connaissance de Python est préférable, de même qu’une première expérience en Machine Learning.
Une connaissance préalable de TensorFlow, Keras ou PyTorch n’est pas obligatoire.
Les postes de travail et les logiciels nécessaires au bon déroulement de la formation sont fournis par Xebia.

Validation

À la fin de cette formation, les stagiaires recevront une attestation de présence.

SOFTWARE TRAINING DONE RIGHT